How much water do you need?

A guide to water, fluid balance and hydration.


With the hot weather here, and hopefully staying, I thought that I would revisit the topic of water and fluid balance.


Water has many important jobs but for athletes;

It lubricates and cusions tissues.

It dissolves proteins and transports proteins and minerals around the body.

It regulates our temperature.


So how much water should you drink?


All things being equal for every KG of bodyweight you need to ingest 30-40ml of water to maintain an equilibrium.


That means for an 8st athlete (approx 50kg) you would need to consume between 1.5litres and 2litres before you start to account for any loss due to exercise.


Losing a small amount of water can affect athletics performance and energy.


1% loss we see a reduced aerobic endurance.

3 % loss we start to see reduced muscular endurance.

4% loss we see reduced muscle strength, reduced motor skills and heat cramps.

5% loss we see heat exhaustion, cramping fatigue and a reduced mental capacity.


When we exercise we lose both water and salts when we sweat.


As we lose more water than salts we risk an electrolyte imbalance.


What should you consume during training? Water, Isotonic, Hypotonic or Hypertonic?


Sessions lasting under 60 minutes.


If you are training intense endurance or interval-based session for under an hour and if you have a good diet it is likely that you will not need an external fuel requirement.


Your body will be able to store adequate carbohydrates to get you through the session.


However, you will still need to balance your electrolyte intake.


After studying the different brands I am a big fan of the Torq products. They might not be as tasty as some of the other products, the reason for this is that they do not contain any artificial sweeteners and are designed to be more rapidly absorbed into the body.


In fact, after research, and the Panorama programme on Electrolyte tablets, I would not give my child any other brand.


For a hydrating drink to be effective is must be rapidly absorbed into the body. It needs to move across the wall of the small intestine and into the bloodstream.


The Torq hypotonic solution is the fasted way to hydrate and is superior to most brands on the market as it facilitates both passive and facilitated transport into your system. (most electrolyte tablets will only facilitate passive transport. )


You can read more on this here if you want the science.

https://www.torqfitness.co.uk/product-category/nutrition/hydration-products#section-fillup-4


I would recommend that the athletes use at training the Torq Hydration drink for sessions that last under 60 mins to hydrate and replace electrolytes.


For sessions lasting more than 60 mins, or if an athlete frequently 'hits the wall or bonks" in under 60 mins of training.


For this, you will need a drink that has both electrolytes and carbohydrates.


There is a great video here that explains how and why you should fuel with a carbohydrate drink for exercise lasting more than 60 mins and what drinks are better for optimum fueling.


https://www.torqfitness.co.uk/news/why-fuel-running-video


Again after research Torq is the only brand that I would be happy giving my child.



Disclaimer - You can of course make your own drinks fairly easily, but I prefer the ease of a pre-made drink.


After research I partnered up with Torq so that the athletes can get a discount on products. I receive no commission on any sales, get no free product and all discount are passed onto the athletes in full.




Research References and papers for Energy Drinks.

  1. Stellingwerff, T & Cox, GR. (2014) Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Appl Physiol Nutr Metab. 2014 Sep;39(9):998-1011.

  2. Wilson. PB., Ingraham, SJ. (2015) Glucose-fructose likely improves gastrointestinal comfort and endurance running performance relative to glucose-only. Scand J Med Sci Sports. [Epub ahead of print].

  3. Currell, K & Jeukendrup, A.E. (2008) Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 40(2):275–81.

  4. Triplett, D., Doyle, D., Rupp, J., Benardot, D. (2010) An isocaloric glucose-fructose beverage’s effect on simulated 100-km cycling performance compared with a glucose-only beverage. Int J Sport Nutr Exerc Metab. 20(2):122–31

  5. Tarpey, M.D., Roberts, J.D., Kass, L.S., Tarpey, R.J., Roberts, M.G. (2013) The ingestion of protein with a maltodextrin and fructose beverage on substrate utilisation and exercise performance. Appl Physiol Nutr Metab. 38(12):1245–53.

  6. Rowlands, D.S., Swift, M., Ros, M., Green, J.G. (2012) Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl Physiol Nutr Metab. 37(3):425–36.

  7. Baur, D.A., Schroer, A.B., Luden, N.D., Womack, C.J., Smyth, S.A., Saunders, M.J. (2014) Glucose-fructose enhances performance versus isocaloric, but not moderate, glucose. Med Sci Sports Exerc. 46(9):1778–86.

  8. Rowlands, D.S., Thorburn, M.S., Thorp, R.M., Broadbent, S.M., Shi, X. (2008) Effect of graded fructose co-ingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance. J Appl Physiol. 104:1709–19.

  9. O’Brien, W.J & Rowlands, D.S. (2011) Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. Am J Physiol Gastrointest Liver Physiol. 300(1):G181–9.

  10. O’Brien, W.J., Stannard, S.R., Clarke, J.A., Rowlands, D.S. (2013) Fructose–maltodextrin ratio governs exogenous and other CHO oxidation and performance. Med Sci Sports Exerc. 45(9):1814–24.

  11. Rowlands, D.S., Swift, M., Ros, M., Green, J.G. (2012) Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Applied Physiology, Nutrition, and Metabolism. 37(3): 425-436.

  12. Smith, J.W., Pascoe, D.D., Passe, D., Ruby, B.C., Stewart, L.K., Baker, L.B., et al. (2013) Curvilinear dose-response relationship of carbohydrate (0–120 g·h−1) and performance. Med Sci Sports Exerc. 45(2):336–41.

  13. Roberts, J.D., Tarpey, M.D., Kass, L.S., Tarpey, R.J., Roberts, M.G. (2014) Assessing a commercially available sports drink on exogenous carbohydrate oxidation, fluid delivery and sustained exercise performance. J Int Soc Sports Nutr. 11(1):1–14.

  14. Jentjens, R.L., Underwood, K., Achten, J., Currell, K., Mann, C.H., Jeukendrup, A.E. (2006) Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol. 100(3):807–16.

  15. Jeukendrup, A.E & Moseley, L. (2010) Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports. 20(1):112–21.

  16. Davis, J.M., Burgess, W.A., Slentz, C.A., Bartoli, W.P. (1990) Fluid availability of sports drinks differing in carbohydrate type and concentration. Am J Clin Nutr. 51(6):1054–7.

  17. Jentjens, R.L., Venables, M.C., Jeukendrup, A.E. (2004) Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol. 96(4):1285–91.

  18. Jentjens, R.L., Achten, J., Jeukendrup, A.E. (2004) High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc. 36(9):1551–8.

  19. Wallis, G.A., Rowlands, D.S., Shaw, C., Jentjens, R.L., Jeukendrup, A.E. (2005) Oxidation of combined ingestion of maltodextrins and fructose during exercise. Med Sci Sports Exerc. 37(3):426–32.

  20. Jentjens, R.L., Moseley, L., Waring, R.H., Harding, L.K., Jeukendrup, A.E. (2004) Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol. 96(4):1277–84.

  21. Jentjens, R.L & Jeukendrup, A.E. (2005) High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Brit J Nutr. 93:485–92.

  22. Fuchs, C.J., Gonzalez, J.T., Beelen, M., Cermak, N.M., Smith, F.E., Thelwall, P.E., Taylor, R., Trenell, M.I., Stevenson, E.J., van Loon, L.J. (2016) Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes. J Appl Physi. [Epub ahead of print].

For reviews see:

Jeukendrup, A.E., 2010. Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. Curr Opin Clin Nutr Metab Care. Jul;13(4):452-7.

Rowlands, D.S., Houltham, S., Musa-Veloso, K., Brown, F., Paulionis, L., Bailey, D., 2015.Fructose-Glucose Composite Carbohydrates and Endurance Performance: Critical Review and Future Perspectives. Sports Med. Nov;45(11):1561-76.

Research linking immunity to carbohydrate ingestion during and post exercise:

Gleeson, M. and Bishop, N.C., 2000. Modification of immune responses to exercise by carbohydrate, glutamine and anti‐oxidant supplements. Immunology and Cell Biology, 78(5), pp.554-561.

Cupps, T.R. and Fauci, A.S., 1982. Corticosteroid‐mediated immunoregulation in man. Immunological reviews, 65(1), pp.133-155.

Burke, E.R., 2002. Serious Cycling. Human Kinetics. pp.154-155.



Research linking immunity to carbohydrate ingestion during and post-exercise:

  1. Baker, L., Jeukendrup, AE. (2014) Optimal Composition of Fluid-Replacement Beverages. Comprehensive Physiology, 4:575-620.

  2. Meinild, A.K., Klaerke, D., Loo, D.D.F et al (1998) The human Na+/glucose cotransport is a molecular water pump. Journal Physiology. 508:15-21.

  3. Thomson, A.B., Keelan, M., Thiesen, A., Clandinin, M.T., Ropeleski, M., Wild, G.E. (2001) Small bowel review: Normal Physiology Part 1. Dig Dis Sci. 46(12):2567-87.

  4. Shi, X., & Passe, D. H. (2010) Water and solute absorption from carbohydrate-electrolyte solutions in the human proximal small intestine: a review and statistical analysis. Int J Sport Nutr Exerc Metab, 20(5), 427-42.

  5. Loo, D. D., Zeuthen, T., Chandy, G., & Wright, E. M. (1996) Cotransport of water by the Na+/glucose cotransporter. Proceedings of the National Academy of Sciences, 93(23), 13367-13370.

  6. Stellingwerff, T & Cox, GR. (2014) Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Appl Physiol Nutr Metab. 2014 Sep;39(9):998-1011.

  7. Wilson. PB., Ingraham, SJ. (2015) Glucose-fructose likely improves gastrointestinal comfort and endurance running performance relative to glucose-only. Scand J Med Sci Sports. [Epub ahead of print].

  8. Currell, K & Jeukendrup, A.E. (2008) Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 40(2):275–81.

  9. Triplett, D., Doyle, D., Rupp, J., Benardot, D. (2010) An isocaloric glucose-fructose beverage’s effect on simulated 100-km cycling performance compared with a glucose-only beverage. Int J Sport Nutr Exerc Metab. 20(2):122–31

  10. Tarpey, M.D., Roberts, J.D., Kass, L.S., Tarpey, R.J., Roberts, M.G. (2013) The ingestion of protein with a maltodextrin and fructose beverage on substrate utilisation and exercise performance. Appl Physiol Nutr Metab. 38(12):1245–53.

  11. Rowlands, D.S., Swift, M., Ros, M., Green, J.G. (2012) Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl Physiol Nutr Metab. 37(3):425–36.

  12. Baur, D.A., Schroer, A.B., Luden, N.D., Womack, C.J., Smyth, S.A., Saunders, M.J. (2014) Glucose-fructose enhances performance versus isocaloric, but not moderate, glucose. Med Sci Sports Exerc. 46(9):1778–86.

  13. Rowlands, D.S., Thorburn, M.S., Thorp, R.M., Broadbent, S.M., Shi, X. (2008) Effect of graded fructose co-ingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance. J Appl Physiol. 104:1709–19.

  14. O’Brien, W.J & Rowlands, D.S. (2011) Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. Am J Physiol Gastrointest Liver Physiol. 300(1):G181–9.

  15. O’Brien, W.J., Stannard, S.R., Clarke, J.A., Rowlands, D.S. (2013) Fructose–maltodextrin ratio governs exogenous and other CHO oxidation and performance. Med Sci Sports Exerc. 45(9):1814–24.

  16. Rowlands, D.S., Swift, M., Ros, M., Green, J.G. (2012) Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Applied Physiology, Nutrition, and Metabolism. 37(3): 425-436.

  17. Smith, J.W., Pascoe, D.D., Passe, D., Ruby, B.C., Stewart, L.K., Baker, L.B., et al. (2013) Curvilinear dose-response relationship of carbohydrate (0–120 g·h−1) and performance. Med Sci Sports Exerc. 45(2):336–41.

  18. Roberts, J.D., Tarpey, M.D., Kass, L.S., Tarpey, R.J., Roberts, M.G. (2014) Assessing a commercially available sports drink on exogenous carbohydrate oxidation, fluid delivery and sustained exercise performance. J Int Soc Sports Nutr. 11(1):1–14.

  19. Jentjens, R.L., Underwood, K., Achten, J., Currell, K., Mann, C.H., Jeukendrup, A.E. (2006) Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol. 100(3):807–16.

  20. Jeukendrup, A.E & Moseley, L. (2010) Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports. 20(1):112–21.

  21. Davis, J.M., Burgess, W.A., Slentz, C.A., Bartoli, W.P. (1990) Fluid availability of sports drinks differing in carbohydrate type and concentration. Am J Clin Nutr. 51(6):1054–7.

  22. Jentjens, R.L., Venables, M.C., Jeukendrup, A.E. (2004) Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol. 96(4):1285–91.

  23. Jentjens, R.L., Achten, J., Jeukendrup, A.E. (2004) High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc. 36(9):1551–8.

  24. Wallis, G.A., Rowlands, D.S., Shaw, C., Jentjens, R.L., Jeukendrup, A.E. (2005) Oxidation of combined ingestion of maltodextrins and fructose during exercise. Med Sci Sports Exerc. 37(3):426–32.

  25. Jentjens, R.L., Moseley, L., Waring, R.H., Harding, L.K., Jeukendrup, A.E. (2004) Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol. 96(4):1277–84.

  26. Jentjens, R.L & Jeukendrup, A.E. (2005) High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Brit J Nutr. 93:485–92.

  27. Fuchs, C.J., Gonzalez, J.T., Beelen, M., Cermak, N.M., Smith, F.E., Thelwall, P.E., Taylor, R., Trenell, M.I., Stevenson, E.J., van Loon, L.J. (2016) Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes. J Appl Physi. [Epub ahead of print].

53 views0 comments